Oscillating Tableaux , S p × S q - modules , and Robinson - Schensted - Knuth correspondence

نویسندگان

  • Igor Pak
  • Alexander Postnikov
چکیده

The Robinson-Schensted-Knuth correspondence (RSK, see [8] and Corollary 2.5 below) is a bijection between pairs of semi-standard Young tableaux of the same shape and matrices with nonnegative integer entries with prescribed column and row sums. This correspondence plays an important role in the representation theory of the symmetric group and general linear groups, and in the theory of symmetric functions. It is possible (see [2, 3, 4, 5, 10]) to construct an analogue of the RSK for oscillating tableaux, i.e., sequences of Young diagrams α = (α(0), . . . , α(k)) such that each α(i) and α(i+1) differ by a horizontal strip. We present a new approach to the RSK correspondence for oscillating tableaux. First, we show that the number of oscillating tableaux of a given weight and shape is equal to the multilplicity of the corresponding irreducible representation in a certain naturally defined Sp × Sq-module. This allows us to recover the enumerative results from [4, 10, 11, 12] (see Section 4). In Section 5, we extend this construction to oscillating supertableaux. In

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Box-Ball Systems and Robinson-Schensted-Knuth Correspondence

We study a box-ball system from the viewpoint of combinatorics of words and tableaux. Each state of the box-ball system can be transformed into a pair of tableaux (P, Q) by the Robinson-Schensted-Knuth correspondence. In the language of tableaux, the P-symbol gives rise to a conserved quantity of the box-ball system, and the Q-symbol evolves independently of the P-symbol. The time evolution of ...

متن کامل

Properties of the Robinson-schensted Correspondence for Oscillating and Skew Oscillating Tableaux

In this paper, we consider the Robinson-Schensted correspondence for oscillating tab-leaux and skew oscillating tableaux deened in 15] and 3]. First we give an analogue, for the oscillating tableaux, of the classical geometric construction of Viennot for standard tableaux ((16]). Then, we extend a construction of Sagan and Stanley ((10]), dealing with standard tableaux and skew tableaux, to ded...

متن کامل

Evacuation and a geometric construction for Fibonacci tableaux

Tableaux have long been used to study combinatorial properties of permutations and multiset permutations. Discovered independently by Robinson and Schensted and generalized by Knuth, the Robinson-Schensted correspondence has provided a fundamental tool for relating permutations to tableaux. In 1963, Schützenberger defined a process called evacuation on standard tableaux which gives a relationsh...

متن کامل

Comment on ‘a Decomposition of Schur Functions and an Analogue of the Robinson-schensted-knuth Algorithm’

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-skyline augmented fillings to provide a combinatorial proof that the Schur functions decompose into nonsymmetric functions indexed by compositions. The insertion procedure involved in the proof leads to an analogue of the Robinson-SchenstedKnuth Algorithm for semi-skyline augmented fillings. This procedure co...

متن کامل

Oscillating tableaux and a superanalogue of the Robinson-Schensted-Knuth correspondence

In this paper, we investigate the super RSK correspondence, first introduced by Pak and Postnikov (1994), which generalizes both the RSK correspondence and the dual RSK correspondence. The bijection relates objects that are known as oscillating supertableau and (intransitive) supergraphs. We prove a number of theorems that were stated in the original paper of Pak and Postnikov, but whose proofs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015